Two-Dimensional Heteroscedastic Discriminant Analysis for Facial Gender Classification
نویسندگان
چکیده
In this paper, a novel discriminant analysis named two-dimensional Heteroscedastic Discriminant Analysis (2DHDA) is presented, and used for gender classification. In 2DHDA, equal within-class covariance constraint is removed. Firstly, the criterion of 2DHDA is defined according to that of 2DLDA. Secondly, the criterion of 2DHDA, log and rearranging terms are taken, and then the optimal projection matrix is solved by gradient descent algorithm. Thirdly, face images are projected onto the optimal projection matrix, thus the 2DHDA features are extracted. Finally, Nearest Neighbor classifier is selected to perform gender classification. Experimental results show that higher recognition rate is obtained by way of 2DHDA compared with 2DLDA and HDA.
منابع مشابه
Two-dimensional Heteroscedastic Linear Discriminant Analysis for Age-group Classification
This paper presents a novel LDA algorithm named 2DHLDA (2-Dimensional Heteroscedastic Linear Discriminant Analysis). The proposed algorithms are applied on age-group classification using facial images under various lighting conditions. 2DHLDA significantly overcomes the singularity problem, so-called ’Small Sample Size’ problem (S3 problem), and the original feature space is split into useful d...
متن کاملTwo-Dimensional Heteroscedastic Feature Extraction Technique for Face Recognition
One limitation of vector-based LDA and its matrix-based extension is that they cannot deal with heteroscedastic data. In this paper, we present a novel two-dimensional feature extraction technique for face recognition which is capable of handling the heteroscedastic data in the dataset. The technique is a general form of two-dimensional linear discriminant analysis. It generalizes the interclas...
متن کاملHeteroscedastic linear feature extraction based on sufficiency conditions
Classification of high-dimensional data typically requires extraction of discriminant features. This paper proposes a linear feature extractor, called whitened linear sufficient statistic (WLSS), which is based on the sufficiency conditions for heteroscedastic Gaussian distributions. WLSS approximates, in the least squares sense, an operator providing a sufficient statistic. The proposed method...
متن کاملGenetic Feature Subset Selection for Gender Classification: A Comparison Study
We consider the problem of gender classification from frontal facial images using genetic feature subset selection. We argue that feature selection is an important issue in gender classification and demonstrate that Genetic Algorithms (GA) can select good subsets of features (i.e., features that encode mostly gender information), reducing the classification error. First, Principal Component Ana...
متن کاملExtending Kernel Fisher Discriminant Analysis with the Weighted Pairwise Chernoff Criterion
Many linear discriminant analysis (LDA) and kernel Fisher discriminant analysis (KFD) methods are based on the restrictive assumption that the data are homoscedastic. In this paper, we propose a new KFD method called heteroscedastic kernel weighted discriminant analysis (HKWDA) which has several appealing characteristics. First, like all kernel methods, it can handle nonlinearity efficiently in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer and Information Science
دوره 2 شماره
صفحات -
تاریخ انتشار 2009